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Global systematic review with meta-analysis
shows that warming effects on terrestrial
plant biomass allocation are influenced by
precipitation and mycorrhizal association

Lingyan Zhou1, Xuhui Zhou 1,2 , Yanghui He2, Yuling Fu1, Zhenggang Du2,
Meng Lu3, Xiaoying Sun1, Chenghao Li1, Chunyan Lu1, Ruiqiang Liu2,
Guiyao Zhou 1, Shahla Hosseni Bai4 & Madhav P. Thakur 5

Biomass allocation in plants is fundamental for understanding and predicting
terrestrial carbon storage. Yet, our knowledge regarding warming effects on
root: shoot ratio (R/S) remains limited. Here, we present a meta-analysis
encompassing more than 300 studies and including angiosperms and gym-
nosperms as well as different biomes (cropland, desert, forest, grassland,
tundra, and wetland). The meta-analysis shows that average warming of
2.50 °C (median = 2 °C) significantly increases biomass allocation to roots with
a mean increase of 8.1% in R/S. Two factors associate significantly with this
response to warming: mean annual precipitation and the type of mycorrhizal
fungi associated with plants. Warming-induced allocation to roots is greater in
drier habitats when compared to shoots (+15.1% in R/S), while lower in wetter
habitats (+4.9% in R/S). This R/S pattern is more frequent in plants associated
with arbuscular mycorrhizal fungi, compared to ectomycorrhizal fungi. These
results show that precipitation variability and mycorrhizal association can
affect terrestrial carbon dynamics by influencing biomass allocation strategies
in a warmer world, suggesting that climate change could influence below-
ground C sequestration.

Terrestrial carbon (C) dynamics primarily depend on plant carbon
economics1–3. Plants allocate carbon to their above- and belowground
organs, often studied as a ratio between root and shoot biomass (R/S)4.
In general, the R/S reflects an optimal allocation of resources by plants
and is a crucial parameter for estimating terrestrial C storage5. When
global change factors induce alteration of resource supply for plants,
their optimal allocation patternsmay shift, resulting in deviations in R/

S6. For example, drought and elevated CO2 generally enhance the
biomass allocation of roots over shoots for acquiring water and
nutrients7, whereas increased precipitation and nitrogen deposition
usually elevate the biomass allocation to shoots for an increased light
competition8,9. Climate warming has also been shown to affect net
primary production in terrestrial ecosystems10–12, such as by increasing
biomass production. If this triggers soil nutrient deficits, plant carbon
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economics are likely to change13–15. Accordingly, warming effects on R/
S may depend on temperature effects on resource supply, which
makes it challenging to predict warming effects on plants’ biomass
allocations, particularly across different environmental conditions16,17.

The antecedent climatic conditions (e.g., mean annual tempera-
ture and precipitation) of a given area are often considered as the
significant predictors of R/S variation across terrestrial plants4. How-
ever, whether the long-term correlation between R/S and climatic
conditions conform to immediate R/S response to warmed environ-
ments remains unknown18,19. Apart from local climate, belowground
properties of ecosystems (e.g., nutrients, root traits, and root-soil
interface) can further influence the response of R/S to warming12,20,21.
For instance, the mutualistic symbiosis between root and mycorrhizal
fungi (MF), which is universally present in terrestrial ecosystems22,
might affect patterns of plant carbon allocation depending on differ-
ent nutrient foraging strategies of mycorrhizal root systems15,23,24.
Plants with the same mycorrhizal association might respond in (eco-
logically) similar ways to global change factors, especially to alteration
of resource availability in soils25. As two major types of mycorrhizas,
arbuscular mycorrhizal fungi (AMF)’s hyphae penetrate the cell wall
and invaginate the cell membrane within the host plant root, whereas
the hyphaeof ectomycorrhizal fungi (EMF) donot penetrate individual
root cell. Moreover, AMF can increase the host-plant’s uptake of
inorganic nutrients, while EMF provides their host plants with greater
access to soil organic nutrient pools26,27. Studies have shown that the
dominance of a given mycorrhizal fungi type (MFT) could vary across
terrestrial biomes, which might explain the variable biomass alloca-
tions reported in different biomes28,29. Consequently, we suspect that
warming effects on R/S across terrestrial biomes could also be regu-
lated by biome-specific MFT dominance.

Here, we propose three potential hypotheses to better under-
stand how biomass allocation in response to warming would alter the
distribution of terrestrial carbon at a global scale30. First, biomass
allocation between above- and belowground compartments of plants
may differ due to warming. Using a meta-analysis, we test this
hypothesis by examining how the intercept between R/S at warmed
temperature and R/S at ambient temperature deviates from 0—we
refer to it as a shift in vertical biomass allocation in terrestrial plants
(Fig. 1a, b). For instance, when this intercept >0, it would imply that
greater biomass is allocated downwards (i.e., vertically), meaning that
there will be a greater R/S under warming than that at ambient tem-
perature (Fig. 1a, b). Second, warming can homogenize R/S across
biomes. To test this, weexamine how the slope betweenR/S atwarmed
temperature and R/S at ambient temperature (as a proxy of biomes)
deviates from1—werefer to it as a shift in horizontal variability ofR/S in
terrestrial plants across biomes (Fig. 1c, d). For instance, when this
slope < 1, it would imply that warming decreases the horizontal varia-
bility of R/S and thereby causes the homogenization of R/S among
diverse biomes (Fig. 1c, d). Third, themean annual precipitation (MAP)
would be a key factor determining the response of R/S due to the
direct dependency of belowground resources, such as nutrients and
soil water, onMAP. To test these hypotheses,we collected results from
322 warming experiments (Supplementary Fig. 1) with 94 pairs of
observations to explore the effects of warming on R/S (Fig. 1f). Using a
meta-analytic technique, we show that, with a mean magnitude of
2.50 °C and the median of 2 °C (Supplementary Table 1), climate
warming increases R/S (intercept > 0), whereas it decreases the varia-
bility in R/S among terrestrial biomes (slope < 1, Fig. 1e). These results
suggest that plants with greater investment to shoot in ambient con-
dition shift their allocation strategy by allocatingmore to root biomass
in warmed conditions rather than to shoot biomass, and vice versa.
This subsequently triggers warming-induced homogenization of R/S
among diverse biomes (Fig. 1e). We further show that MAP and
mycorrhizal association with plants correlate strongly with these pat-
terns of R/S in terrestrial plants.

Results
Based on 94 pairs of observations of root:shoot ratio (R/S), average
warming of 2.5 °C increased the R/S by 6.1 to 8.8% (with a mean
increaseof 8.1%),whichwas significantly larger than0 (p <0.01, Fig. 1f).
The intercept betweenR/S atwarmed temperature and that at ambient
temperature ranged from 0.044 to 0.107 (CI > 0, p <0.05, Fig. 1e),
suggesting higher biomass allocation to roots in vertical dimension in
warmed environments (Fig. 1a). Meanwhile, the slope between R/S at
warmed temperature and that at ambient temperature ranged from

Fig. 1 | Hypotheses and actual warming effects on root:shoot ratio.
a–d Hypotheses of the warming effect on root:shoot ratio (R/S). e The actual
relationship between log10-transformed R/S at experimentalwarming and ambient
temperature. f The frequency distribution of response ratio of R/S. g The log10-
transformed residuals of R/S under the warmed condition from 1:1 line along with
log10-transformed R/S under ambient condition. The error bands in panel
e represent the upper and lower 95% confidence intervals. Across studies in our
meta-analysis, the intercept in panel e was larger than 0, implying greater biomass
is allocated (vertically) downwards, i.e., greater R/S under warming than that at
ambient temperature (a, e); the opposite scenario of downward allocation (i.e.,
upward allocation, intercept smaller than zero) is illustrated in panel (b). When the
slope is smaller than 1, it would imply that warming decreases the horizontal
variability of R/S and thus causes the homogenizationof R/S amongdiverse biomes
(c, e); the opposite scenario of homogenization (differentiation, slope >1) is illu-
strated in panel (d). The size of each dot in panel e indicates the relative weight of
the individual response ratio of R/S. The p-value of the normal distribution test of
RR(R/S) was 0.3818. The RR++ indicates the weighted response ratio of R/S in panel
(f); the ‘n’ in panel (f) is the sample size of the response ratio of R/S.
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0.908 to 0.997 (CI < 1, p <0.05, Fig. 1e), indicating a horizontal
homogenization of R/S among diverse biomes under warmed condi-
tions (Fig. 1e). The biomes with higher R/S in ambient condition had
greater variation in R/S in response to warming (Fig. 1g and Supple-
mentary Fig. 2).

On the global scale, 164 species of vascular plants belonging to
angiosperm (144) and gymnosperm taxa (20) were included in this
study. Relative to annual species (23), perennial ones (141) were more
common, whereas the numbers of woody (77) and herb species (87)
were comparable in ourmeta-analysis (Fig. 2). Although the responses
of R/S towarming across all the vascular plants displayed a significant
phylogenetic signal (Blomberg’s K > 1, Supplementary Table 2), mean
annual precipitation (MAP)was themost critical factor in determining
the warming effects on R/S [i.e., response ratio (RR) of R/S, RR(R/S)]
compared to all other predictors used in our analysis (Fig. 3). We
found that MAP was negatively correlated with RR(R/S) (R2 = 0.104,
Figs. 3 and 4, Supplementary Table 3). Moreover, the weighted RR(R/
S) reversed from positive to negative in sites with MAP higher than
900mm (Fig. 4).

Mycorrhizal fungi type (MFT: 121 for AMF and 43 for EMF, Fig. 2)
was the second most important factor explaining warming effects on
plant’s R/S (Fig. 3a). Besides MFT, no significant differences were
found in any plant biomass variables (including R/S) in response to
warming between evergreen vs. deciduous trees, broad vs. coniferous

leaf trees, annual vs. perennial plants, and angiosperms vs. gymnos-
perms (Supplementary Table 4). Although there was a significant
interaction between MFT and biomes (Supplementary Table 5),
MFT still explained a greater proportion of variance for RR(R/S)
relative to biome types (i.e., forest, grassland, cropland, tundra,
andwetland, Fig. 3b). The sensitivity ofRR(R/S) toMAP (i.e., the slopes
in Fig. 4b) in biomes with ectomycorrhizal fungi (EMF) was smaller
than in biomes with arbuscular mycorrhizal fungi (AMF). Moreover,
both warming magnitude and warming duration didn’t affect the
RR(R/S) across warming experiments (Fig. 3a and Supplementary
Table 6).

Overall, warming enhanced plant total biomass (TB, +10.0%)
mainly by increasing belowground biomass (BGB, +13.1%) even when it
decreased aboveground biomass of plants (AGB, −8.9%, p >0.05,
Fig. 5). Warming did not change TB or BGB of plants associated with
AMFbut decreased their AGBby 13.8% and subsequently increasedR/S
by 9.9%. Warming stimulated TB, AGB, and BGB in biomes with EMF
and with mixed AMF and EMF (AM-EMF), but only enhanced R/S in
biomes with EMF-associated plants (Fig. 5). MFTs were significantly
associated with the warming response of AGB. In contrast, the effects
of biomes and plant functional types (PFTs) were true only for the
response of BGB (Supplementary Table 5). In our path model, we fur-
ther found that MFTS (i.e., AMF, EMF, and AM-EMF) explained
22.9% variation inAGB’s response towarming,whereasPFTS (i.e., herbs

Fig. 2 | Phylogenetic tree of plant species used in this study. This phylogenetic
tree is based on 164 vascular plant species (consisting of both gymnosperms and
angiosperms), which were included to estimate the weighted response ratio of
root:shoot ratio, plant total biomass, above- andbelowgroundbiomass towarming.

Plants in the phylogenetic tree are shown with their mycorrhizal association (AMF
arbuscular mycorrhizal fungi, EMF ectomycorrhizal fungi), life form (woody or
herb), and growth form (annual or perennial).
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and woody plants) and MAP were the major significant pathways
contributing to 25.4% of variation in BGB’s response (Fig. 6). Both
responses of AGB and BGB to warming directly contributed (AGB
negatively and BGB positively) to shifts in RR(R/S) in our path model,
explaining a total of 46.3% of variation in RR(R/S) across studies
(Fig. 6). Moreover, RR(R/S) was correlated with BGB responses to
warming [RR(BGB)] (R2 = 0.31, p <0.001), but not with AGB responses
(R2 = 0.01, p =0.392, Supplementary Fig. 2). The importanceof PFTs on
RR(R/S) was only true in studies with a warming-induced inhibition of
TB (Supplementary Fig. 4). In addition, other experimental factors
(e.g., methods of warming and belowground biomass measurement,
Supplementary Table 7) and classifications of studies (e.g., field or
laboratory experiments, Supplementary Table 4) did not explain any
variation in RR(R/S).

Discussion
Our meta-analysis shows that climate warming enhances plants’ bio-
mass allocation to belowground but mainly so in drier habitats,

agreeing with the hypothesis of warming-induced vertical downward
biomass allocation (Fig. 1)31. The contingency of warming effects on
plant biomass via soilmoisture (Supplementary Fig. 5) might be one of
the primary reasons for the upregulation of R/S in many study sites,
except for the tundra and alpine biomes where soils are often
frozen17,32. Even in the studies with decreased total plant biomass in
response to warming, we found that belowground biomass allocations
were higher than aboveground ones (Supplementary Figs. 6 and 7)33,34.
Such a plant strategy can have important implications for soil carbon
dynamics, potentially due to a lower turnover rate of root-associated
carbon (i.e., carbon in hyphae and root per se) compared to shoot-
associated carbon33,34. Biomes with lower original R/S at ambient
conditions showed greater allocation to belowground biomass when
warming most likely had induced greater demand for resources35,
agreeing with our hypothesis of horizontal homogenization of R/S
across biomes in a warmer world (Fig. 1). We suspect that the upre-
gulated R/S due to warming might alter the carbon transfer between
atmosphere and soil21,36.
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Fig. 4 | Correlations between mean annual precipitation and response of
root:shoot ratio to warming. a Correlations between mean annual precipitation
(MAP, mm) and the response of root:shoot ratio [RR(R/S)]. b Correlations between
MAP and RR(R/S) in biomes with dominant root symbiosis of arbuscular mycor-
rhizal and ectomycorrhizal fungi (AMF and EMF), respectively. The size of the data

points indicates relative weights in each plot. The points above the line of RR(R/
S) = 0 indicate thatwarming enhanced root biomass accumulation relative to shoot
biomass (i.e., RR(R/S) > 0), and vice versa. The error bands in panels a, b represent
the upper and lower 95% confidence intervals. The p-values were calculated from
two-tailed tests.
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information of these predictors is provided in Supplementary Table 3. Biomes
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refer to plant communities with single plant species and multiple plant species,
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symbiosis of arbuscular mycorrhizal (AMF), ectomycorrhizal fungi (EMF), mixed
AMF, and EMF (AM-EMF), respectively (b).
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More specifically, our results suggest that in areas with mean
annual precipitation (MAP) lower than∼900mm, warmed air and soil
surface could induce greater belowground biomass allocation
potentially for plants to exploit resources in deeper soil layers, where
water is more readily available, and temperature is cooler (Fig. 7a)37.
The long-term adaptation of plants to water deficiency, e.g., a higher
water use efficiency, ensures more biomass accumulation under
warmed conditions, thereby triggering anupregulationof R/S (Fig. 7a,
and prolonging the C residence time in plants38. In areas with MAP
greater than ∼900mm, adequate soil moisture could enable positive

effects ofwarming onnutrient turnover and availability, e.g., soil NH4
+

and NO3
− for AMF and EMF, respectively (Fig. 7b)15,39. Indeed, the

allocation to belowground biomass in these areas declined conse-
quently in our meta-analysis, but only for terrestrial plants associated
with AMF (Fig. 7b)40.

The regulation of MAP on R/S under warmed conditions was
mainly through the adjustment of belowground biomass accumula-
tion (Supplementary Fig. 3), which responded to variable effects of
warming on soil moisture among plant functional types (PFTs, Sup-
plementary Fig. 6)12,41. Significant changes in belowground biomass
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(BGB) in response to warming indeed varied among PFTs compared
to other categories used in our meta-analysis (Supplementary
Table 5). Woody plants, which are characterized by deeper and evo-
lutionarily mature roots42, can redistribute soil water by hydraulic lift,
supporting an increment in BGB under warmed conditions (Fig. 5)43.
Herbaceousplants,which are characterizedbyevolutionarily younger
roots relative to woody plants, can potentially adjust root traits (e.g.,
specific root length) more readily than biomass12,41. These warming-
induced changes in root traits may have contributed to their non-
significant responses in terms of BGB under warmed conditions

(Fig. 5). In addition to MAP, due to interaction between temperature
and soil moisture, antecedent mean annual temperature (MAT)
was another important background climatic factor influencing
the response of R/S in our meta-analysis44. For instance, MAT dis-
played a negative relationship with R/S due to a warming-induced
significant increment of aboveground biomass (AGB) in most of
the biomes with MAT < 13 °C and plants associated with EMF (Sup-
plementary Table 3)45.

Plant’s association with mycorrhizal fungi further regulated bio-
mass allocation patterns of terrestrial plants in response to warming.
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mass, above- and belowground biomass, and root:shoot ratio. a Biomes with
low mean annual precipitation (MAP) irrespective of mycorrhizal association.
b Biomes with high MAP and arbuscular mycorrhizal (AMF) or ectomycorrhizal
fungi (EMF). TB plant total biomass, AGB aboveground biomass, BGB belowground
biomass, MB microbial biomass, MB C/N microbial biomass C N ratio, SIN soil

inorganic nitrogen, WUE water use efficiency (Supplementary Data 3, Supplemen-
tary Figs. 8 and9). Theup- anddownward arrows indicate significant increment and
decrement of a response variable (p-value < 0.05), whereas “ns” indicates non-
significant changes under warmed conditions. “~” corresponds to no change, and
“?” indicates not known.
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The response of R/S to warming among 164 vascular host plants dis-
played a significant phylogenetic signal (Fig. 2 and Supplementary
Table 2), whereas significant differences were not found between
evergreen vs. deciduous trees, broad vs. coniferous trees, annual vs.
perennial plants, and angiosperms vs. gymnosperms (Supplementary
Table 4). Although both arbuscular mycorrhizal fungi (AMF-) and
ectomycorrhizal fungi (EMF-) associated plants exhibited an overall
increase in R/S, the underlying mechanisms are likely to be different
(Figs. 5, 7). Benefiting from hydrolytic and oxidative extracellular
enzymes produced by the hyphae of EMF46, EMF-associated plants are
capable of growing better under nutrient-deficient conditions relative
to AMF-associated plants13,45. EMF-associated plants showed an
increasing trend of AGB, BGB, and R/S under warming (Fig. 5), likely
due to hyphal-facilitated soil organic matter (SOM) degradation and
root nutrient absorption47. By contrast, AMF-associated plants are
oftenmoreabundant inwarmer sites (e.g., in temperate grasslands and
deciduous forests) with drier soils48–51. Although AMF association
correlated with greater water use efficiency in plants under warmed
conditions (WUE, Supplementary Fig. 7), AMF-associated plants
seemed to slow down the shoot biomass accumulation due to
warming-induced soil water deficiency (mainly in grasses, Supple-
mentary Fig. 9)52 and the potential increment of plant-derived carbon
to AMF53. Interestingly, the regulation of mycorrhizal fungi types on
responses of R/S towarmingweremainly related to shoot biomass but
not to root biomass (Fig. 6), implying the important roles of mycor-
rhizal associations on aboveground biomass allocation in terrestrial
plants in a warmer world24,54,55.

As for biomes with mixed AMF and EMF (AM-EMF, Fig. 5, Sup-
plementary Fig. 8), the complementary resource use (e.g., water and
nutrients) between plants with arbuscular and ectomycorrhizal fungi
provides a plausible explanation for the observed stability of R/S and
higher productivity in response to warming (Fig. 4)56,57. As we did not
find any significant differences in plant biomass allocation (R/S) or
biomass itself (AGB and BGB) to warming between evergreen vs.
deciduous trees, broad vs. coniferous trees, annual vs. perennial
plants, or angiosperms vs. gymnosperms (Supplementary Table 4)
when we ignored the types of mycorrhizal fungi in our analysis, it
further confirms the importance of plants’ association with mycor-
rhizal fungi in understanding their biomass responses to warming
compared to many other plant biotic characteristics.

We suspect that a stronger association of warming effects on
biomass allocation with MAP and mycorrhizal associations could
potentially lead to a redistribution of R/S in the horizontal dimension
with more homogenization and lower variability of biomass alloca-
tion patterns among diverse biomes (Fig. 1)58. Although we found
some clear signals in how warming effects were observed through a
greater allocation of root biomass in terrestrial plants relative to
shoot biomass, we caution readers about the variability in effect
sizes, which could be caused by the distinct effect of warming mag-
nitude and warming duration in a given biome (Supplementary
Table 3). For example, warming magnitude might negatively affect
the response of R/S for biomes with EMF, while warming duration
could induce negative and positive effects for biomes with woody
and herbaceous plants, respectively, as revealed in our analysis
(Supplementary Table 3).

In summary, climate warming with a mean magnitude of 2.5 °C
canenhancebelowgroundbiomassallocation asawhole, butmainly so
in drier habitats. The warming of 2.5 °C also resembles the predicted
IPCC warming (2.4 °C rise of global mean temperature) under a high
greenhouse gas emissions scenario (SSP5-8.5) in the following decades
(2041–2060)59, making our results further relevant for the future of
terrestrial carbon dynamics. Our results highlight that habitat dryness
(orwetness), and typesofmycorrhizal association are crucial factors to
consider when we aim to predict biomass allocation strategies in ter-
restrial plants in response to warming across biomes.

Methods
Data collection
Using the ISI Web of Science, peer-reviewed journal articles
(1950–2020) related to plant biomass, growth, carbon cycling, and/or
soil nitrogen under experimental warming were searched with the
following specific keywords: (warming OR temperature OR heat* OR
greenhouse) AND (biomass OR plant OR allocationOR root OR leaf OR
stem OR photosynthe* OR growth OR aboveground OR belowground
OR respiration OR soil OR carbon OR nitrogen OR microb*). To avoid
bias in publication selection, we used the following criteria to select
the studies for our meta-analysis (Supplementary Data 1): (i) Warming
treatmentswere conducted in terrestrial biomes and at least one of the
following variables was measured: plant total biomass (TB), above-
ground biomass (AGB), belowground biomass (or root biomass, BGB),
root:shoot ratio (R/S), water use efficiency (WUE), soil inorganic
nitrogen (SIN), soil NH4

+, soil NO3
−, microbial biomass (MB), and/or

microbial biomass C/N (MB C/N). (ii) The experimental temperature,
warming methods (e.g., open-top chamber, infrared heater, or soil
heating cable and greenhouse), and dominant plant species were
indicated clearly in both warming and control groups. (iii) Apart from
the difference in experimental temperature, other initial environ-
mental conditions and plant species compositions were the same
between the control and warming groups. (iv) The duration of the
warming experiment was at least longer than one growing season. (v)
The mean, standard deviations/errors, and sample sizes of these vari-
ables could be extracted from the figures, tables, or the text directly.

Using the above-mentioned five selection criteria, 322 papers
associated with the field (280) or laboratory (42) warming experi-
mentswere selected (Supplementary Table 4, Notes andReferences).
The methods of air and/or soil warming in selected studies included
open-top chamber, infrared heater, soil heating cable, and green-
house (Supplementary Table 6). The observations (e.g., TB, AGB,
BGB, or R/S, WUE, SIN, soil NH4

+, soil NO3
−, MB, and/or MB C/N) in

both control and warming groups were extracted using software
GetData (version 2.22) as well as treatment and environmental
information [e.g., warming duration (DUR) and magnitude (WM),
latitude (LAT), mean annual precipitation (MAP) and temperature
(MAT)]. If the local climate conditionwas not reported in a paper, the
WorldClim dataset (http://www.worldclim.org/) was used to obtain
climate variables based on latitude and longitude for that given
study60. Roots or belowground biomass measurements across stu-
dies included direct harvest, soil core, and ingrowth mesh bags
(Supplementary Table 6). In order to analyze the effects of climate
(only field studies) and treatment variable (e.g., warmingmagnitude)
on plant biomass responses to warming, we extracted MAP, MAT,
DUR, andWMaswell as the soil properties (0–30 cmdepth), i.e., bulk
density (BD), clay content (CLAY), and soil organic carbon (SOC) at
each site from Global Gridded Surfaces of Selected Soil Character-
istics (BD from IGBP-DIS)61 and the Harmonized World Soil Database
(CLAY and SOC, from version 1.2, https://daac.ornl.gov/SOILS/
guides/HWSD.html, Supplementary Table 3). The sites of the selec-
ted studies were mainly located in East Asia, North America, and
Europe (Supplementary Fig. 1). The MAP and MAT of sites in field
experiments ranged from 27mm to 2400mm (median 636.2mm),
and −20 °C to 30 °C (median 7.4 °C), respectively. Experimental
warming duration and magnitude ranged from one growing season
to 25 years (median 2 years), and 0.26 °C to 12 °C (median 2 °C),
respectively (Supplementary Fig. 1 and Table 1).

The biome types (including cropland, desert, forest, grassland,
tundra, andwetland, Supplementary Table 5), plant functional types
(PFTs, including woody plant vs. herb, tree vs. shrub, grass vs. forb,
Supplementary Fig. 1), other taxonomy categories (evergreen vs.
deciduous tree, broad vs. coniferous leaf tree, annual vs. perennial
plant, angiosperm vs. gymnosperm, monoculture vs. mixed plant
community, Figs. 2 and 3, Supplementary Table 4) and mycorrhizal
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fungi types (MFTs, Supplementary Fig. 1 and Supplementary
Table 5) for dominant plants in each case study were confirmed
based on the original publications and the latest FungalRoot data-
base (https://nt.ars-grin.gov/fungaldatabases/)45. The MFTs of
biomes were labeled as AMF, EMF, or AM-EMF if the root symbiosis
of dominant plants were arbuscular mycorrhizal fungi (AMF),
ectomycorrhizal fungi (EMF), or mixed AMF and EMF (AM-EMF).
Most analyses in this study focused on AMF, EMF, and AM-EMF, as
biomes with non-mycorrhizal fungi (NMF) were too few to conduct
any meta-analysis (Supplementary Fig. 1).

Data analysis
In this study, we employed response ratio [RR, natural log (ln) of
the ratio of the mean value in warming treatment ( �Xt) to that in
control ( �Xc), Eq. (1)] to reflect warming effects on various response
variables62,63.

RR= ln
Xt

Xc

 !
= lnðXtÞ � lnðXcÞ ð1Þ

Theweighted response ratio (RR++, Eq. (2)), and the standard error
of RR++ [s(RR++), Eq. (3)] in each subgroup [e.g., different MFTs (AMF,
EMF, or AM-EMF) or PFTs (woody plants or herbs)] were calculated
using individual RR(RRij) and its weight (wij), which is the reciprocal of
the variance (vij, Eq. (4), Fig. 4).

RR+ + =
∑m

i = 1∑
k
j = 1wijRRij

∑m
i = 1∑

k
j = 1Wij

ð2Þ

sðRR+ + Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

∑m
i= 1∑

k
j = 1wij

s
ð3Þ

wherem is the number of subgroups, and k is the number of RR in the
ith subgroup (i = 1, 2, …, m; j = 1, 2, …, k).

wij =
1
Vij

, v=
St

2

nt
�Xt

2 +
Sc

2

nc
�Xc

2 ð4Þ

The nt , nc, and St , Sc are the numbers of replicates and standard
deviations for a given variable in the warming and control group,
respectively. The warming effect on a given response variable was
considered statistically significantwhen the95%CI of the effect size did
not overlap with zero. The percentage change of a response variable
under warmed conditions was estimated by [exp(RR++) − 1] × 100%.

The between-group heterogeneity (Qb) of effect sizes was esti-
mated using the Q-statistic in MetaWin 2.1 (Supplementary Table 5)64.
Stepwise linear regression was used to analyse the impacts of envir-
onmental conditions on the responses of root:shoot ratio [RR(R/S),
Supplementary Table 4]. We used Blomberg’s K values to test the
phylogenetic signals on the warming response of plant biomass vari-
ables using the “picante” package (version 1.8.2)65 in R (version 4.1.3, R
Core Team, 2018, Supplementary Table 2). The effects of biomes,
MFTs, PFTs, experimental methods (warming methods and methods
tomeasure root or belowground biomass), warmingmagnitude (WM),
andwarming duration (DUR)were examined to explain the variation in
response variables using the analysis of variance (ANOVA, Supple-
mentary Tables 5 and 6). BothWM andDURwere sub-grouped into six
classes according to themethod explained in Lin et al. (Supplementary
Table 6)12. The importance of eachpredictor for the response ratio of a
given response variable was expressed as the sum of Akaike weights
derived from the model selection using the “glmulti” package
(version 1.0.8)66 in R (Fig. 3a, Supplementary Fig. 3). Nested analysis
was performed using the “nlme” package (version 3.1-158)67 in R to
estimate the variance explained by MFTs (Fig. 3b). We used the

“metafor” package (version 3.4-0)68 in R for the linear regression ana-
lysis between MAP and RR(R/S) (Fig. 4). Structural equation model
(SEM)wasperformedusing the “lavaan” package (version 0.6-12)69 in R
to examine the effects of PFTs,MFTs, backgroundclimate (MAT,MAP),
and warming treatment (WM and DUR) on RR(R/S) via changes in AGB
and BGB under warming (Fig. 6). The figures to depict correlations
between specific response variables were drawn in SigmaPlot 12.5
(Systat Software, San Jose, CA, Supplementary Figs. 2 and 3).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data used in this study are available in Supplementary
Data 1–3.xlsx.

Code availability
The code used in this study is available at https://figshare.com/articles/
online_resource/Code1_2_txt/20390592/1.
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